Hydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry Lecture 7

Inorganic Chemistry Chapter 1: Figure 26.16

physisorption and chemisorption of Hydrogen on a nickel metal surface

Η,

Ni

Ni

(a)

(b)

Schematic representation of Schematic representation of Diverse sites exposed on a Metal surface—a) different Exposed planes, edges; b) steps And kinks from irregularities

© 2009 W.H. Freeman

Hydrogenation of alkenes on supported metal Involves H₂ dissociation and migration of H-atoms to an adsorbed ethene molecule. (Paul Sabatier, 1890)

Mechanism: All isotopomers are seen, therefore highly Reversible prior to loss of the ethane.

Volcano diagrams relate stability of products on Surface: Temp. for a set rate of release vs. the Enthalpy. Intermediate values of ΔH_f , with the rate being a combination of the rate of adsorption and the rate of desorption gives best catalyst.

W. H.

© 2009 W.H. Freeman

Isolobal Analogies: R. Hoffmann

Isolobal species: H, Methyl, M(CO)'s

W. H.

Synthesis of Organometallic Complex Hydrides

• Reaction of MCO with OH⁻, H⁻, or CH₂CHR₂

 $- M(CO)_{n} + OH^{-} = M(CO)_{n-1}(COOH)^{-} = HM(CO)_{n-1}^{-} + CO_{2}^{-}$

- $M(CO)_n + H^- = M(CO)_{n-1}(C(=O)H)^- = HM(CO)_{n-1}^- + CO$

 $- M(CO)_n CH_2 CHR_2 = HM(CO)_{n-1} + CH_2 = CR_2 + CO$

Protonation of MCO anion*

 $- M(CO)_{n}^{-} + H^{+} = M(CO)_{n} H$

• Hydrogenation of MCO dimer**:

 $- M_2(CO)_{2n} + H_2 = M(CO)_n H$

• Oxidative addition of H₂ to (typically) d⁸ metal

 $-M(PR_3)_3X + H_2 = M(CO)_nX(H)_2$

*Oxidative addition of a proton. If a dianion, the resultant MCO hydride will be anionic and may react as a hydride transfer reagent. **The resultant neutral hydride may have acidic characteristics (i.e., the hydrogen may be removed by a base (reductive deprotonation)

Properties of the M-H functionality

- Stereochemically active
- M-H distance range (3d transition metals): 1.5 -1.7 Å
- M-H stretch: 2100 1600 cm⁻¹
- M-H hydride resonance: typically upfield, -1 to -20 ppm, but little correlation with electron density
- M-H Bond Dissociation Energy: 60 -100 kcal/mol (Contrast M-C BDE of ca. 26-30 kcal/mol
- Homolytic cleavage can initiate radical chain reactions
- Acid/Base character: Varies. HCo(CO)₄ is strong acid, pK_a <1; HFe(CO)₄⁻ is weak; Cp₂W(H)₂ forms Lewis Base/Acid adduct with AlMe₃.
- Proton loss is slow as in carbon-based acids.

Acidity of MCO Hydrides				
HM(CO) _n + OH⁻	$H_2O + M(CO)_n^-$			
	K _a			
HCo(CO) ₄	~2			
$HCo(CO)_{3}PPh_{3}$	1×10^{-7}			
$HMn(CO)_5$	8×10^{-8}			
$HRe(CO)_5$	very weak			
$H_2Fe(CO)_4$	$3 \times 10^{-5}; 1 \times 10^{-14}$			
$CpCr(CO)_{3}H$	10-13.3			
CpMo(CO) ₃ H	10-13.9			
CpW(CO) ₃ H	10-16.1			

Metal Carbonyl Anions: Nucleophilicity

 $\{M\}CO^- + RX \longrightarrow RM(CO) + X^-$

Rate = k [MCO][RX]

Anion	CN Anion	Product	CN	Relative nucleophilicity
$CpFe(CO)_2^-$	5	CpFe(CO) ₂ R	6	7.0 x 10 ⁶
$CpRu(CO)_2^{-}$	5	CpRu(CO) ₂ R	6	7.5 x 10 ⁶
CpNi(CO)⁻	4	CpNi(CO)R	5	5.5 x 10 ⁶
Ru(CO) ₅	5	Ru(CO) ₅ R	6	2.5 x 10 ⁴
CpW(CO) ₃	6	CpW(CO) ₃ R	7	~500
Mn(CO) ₅	5	Mn(CO) ₅ R	6	77
CpMo(CO) ₃	6	CpMo(CO) ₃ R	7	67
$CpCr(CO)_{3}^{-}$	6	CpCr(CO) ₃ R	7	4
$Co(CO)_4^-$	4	$RCo(CO)_4$	5	1
V(CO) ₆ -	6	RV(CO) ₆	7	<< 1
Fe(CO) ₄ ²⁻	4	RFe(CO) ₄ -	5	>> 7.0 x 10 ⁶

Another electron rich metal center: Also reacts with Organic Electrophiles: Vaska's Complex

The M-H Bond Functionality: Reactivity

Oxidation state of M reduced by 1; can yield H₂ or initiate radical rxns M oxidation state is unchanged; electron donating ligands stabilize

Nucleophilicity/Hydricity of Anionic MCO Hydrides

Table I. Rate Constants for the Reaction of [PPN]HW(CO) ₅ with RX in THF Solution at 26.0 $^{\circ}$ C ^a						
RX	$k_{2} \times 10^{3}$ s ⁻¹ M ⁻¹	RX	$k_{2} \times 10^{3}$ s ⁻¹ M ⁻¹			
n-C ₄ H ₉ I	>10	2-C ₄ H ₉ Br	$1.79(\pm 0.05)$			
$n \cdot C_4 H_9 Br$	$3.31(\pm 0.13)$	t-C₄H ₉ Br	$2.81(\pm 0.16)$			
<i>n</i> -C ₄ H ₉ Cl	Ь	1-bromoada- mantane	$0.268(\pm 0.014)$			
C ₆ H ₅ CH ₂ Cl	$1.68 (\pm 0.09)$	C ₆ H ₅ Br	$0.369(\pm 0.045)$			
U ₆ H ₅ UUU	>10		>10			

^a Reactions were run under pseudo-first-order conditions with RX in 20-fold excess. $[HW^-] = 0.005 \text{ M}$. Errors calculated at 90% confidence limit. ^b No reaction.

Hydride Transfer Reactivity

 $HM(CO)_n^- + RX \longrightarrow XM(CO)_n^- + RH$

Table I. Rate Constants for the Reaction of [PPN]HW(CO) ₅ with RX in THF Solution at 26.0 $^{\circ}$ C ^a			Rate = $k_2[HM^-][RX]$	
RX	$\frac{k_2 \times 10^3}{\rm s^{-1} \ M^{-1}}$	RX	$rac{k_2 imes 10^3}{ m s^{-1} \ M^{-1}}$	
$n \cdot C_4 H_9 I$ $n \cdot C_4 H_9 Br$ $n \cdot C_4 H_9 Cl$ $C_6 H_5 CH_2 Cl$ $C_6 H_5 COCl$	>10 3.31 (±0.13) b 1.68 (±0.09) >10	2-C ₄ H ₉ Br t-C ₄ H ₉ Br 1-bromoada- mantane C ₆ H ₅ Br C ₆ H ₅ CH ₂ Br	$\begin{array}{c} 1.79 (\pm 0.05) \\ 2.81 (\pm 0.16) \\ 0.268 (\pm 0.014) \\ 0.369 (\pm 0.045) \\ > 10 \end{array}$	Chart I. Reactivity of Anionic Metal Carbonyl Hydrides As Established for the Reaction $[M]H^- + RX \rightarrow [M]X^- + RH^a$ For $R = 1^\circ (n-BuBr)$ $cis-HW(CO)_4P(OMe)_3^- > cis-HCr(CO)_4P(OMe_3)^- >$
Errors calcu	s were run und X in 20-fold ex lated at 90% co	er pseudo-first- acess. [HW ⁻] onfidence limit.	= 0.005 M. ^b No reaction.	$\begin{array}{rcl} & \sim 50 & \sim 50 \\ & HW(CO)_5^- > CpV(CO)_3H^- > & HCr(CO)_5^- > \\ & 3.31 (\pm 0.13) & 2.20 (\pm 0.06) & 1.79 (\pm 0.05) \\ & & HRu(CO)_4^- >> HFe(CO)_4 \\ & & 1.0 & b \\ & & For R = 3^\circ (t \text{-}BuBr) \\ & & HCr(CO)_5^- > & HW(CO)_5^- > cis \text{-}HCr(CO)_4 P(OMe)_3^- > \end{array}$
Organ	ometallics, 1	984 , <i>3</i> , 646		$\begin{array}{llllllllllllllllllllllllllllllllllll$

reaction.

Suppose one protonates the anionic metal hydride of $HW(CO)_5^-$. Is it possible that the resultant H_2 would remain bound to the metal?

Heinekey, JACS, 2005, 850-851; Heinekey, JACS, 2006, 2615-2620

The η^2 -Dihydrogen as Ligand Story

Figure 1. Geometry of the $W(CO)_3(P-i-Pr_3)_2(\eta^2-H_2)$ molecule with hydrogen atoms of the P-*i*-Pr₃ groups omitted for clarity. The positions of the two hydrogen atoms shown were derived from neutron data while heavy-atom positions are from -100(5) °C X-ray data.

Kubas, JACS, 1984, 10, 451.

The η^2 -H₂ Complexes

- Typically d⁶, Oh structures of Cr⁰, Mo⁰, W⁰, Fe^{II}, Ru^{II}, Ir^{III}.
- Bonding: Delicate Balance Required for Stability

Kubas, LANL

Н M≁ Н Morris, U. Toronto $M^{2+}(H^{-})_{2}$ σ - donor σ^* acceptor - Examples of η_2 -H₂ complexes Crabtree, Yale H—H Ph₃P │ H ⊾∽Ir^{III} ∖ $\begin{array}{c} R_{3}P \downarrow C^{O} \\ W^{0} \\ O^{C} \downarrow PR_{3} \end{array}$ 'PPh₃ Crabtree **Kubas** Morris

Every Molecule Has a Story: The η²-H₂ Complexes

Homogeneous Catalysis: Hydrogenation of Alkenes: Wilkinson's catalyst and (one of several versions of) the mechanism

